

Project Overview

Analysis One: BIM with Multiple Prime Contracts Analysis Two: Foundation Wall Bracing Design • Structural Breadth Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study Conclusions Questions

Kristopher Brice | Construction Management | 4.13.2010

PROJECT OVERVIEW

 Owner Moon Area School District
 Occupancy Type

Educational

o Size

291,387 SF

 Cost \$ 70,802,784 (Design+Construction)
 Construction Duration

January 2009 – November 2010

• Delivery Method Design-Bid-Build w/CM Agent

New Moon Area High School & District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts Analysis Two: Foundation Wall Bracing Design • Structural Breadth Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study Conclusions Questions

Kristopher Brice | Construction Management | 4.13.2010

PROJECT OVERVIEW

 Owner Moon Area School District
 Occupancy Type Educational
 Size 291,387 SF

 Cost \$ 70,802,784 (Design+Construction)
 Construction Duration January 2009 – November 2010

• Delivery Method Design-Bid-Build w/CM Agent

4

New Moon Area High School &

District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts
Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

Building Envelope Breadth / M.A.E Study

Conclusions

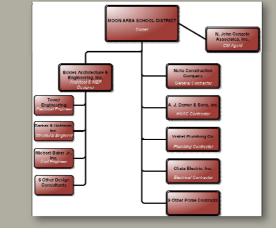
Questions

Kristopher Brice | Construction Management | 4.13.2010

PROJECT TEAM

• Architect & MEP Designer Eckles Architecture & Engineering, Inc.

• Construction Manager N. John Cunzolo Associates, Inc.


• General Contractor Nello Construction Company

• HVAC Contractor

A. J. Demor & Sons, Inc. • Plumbing Contractor

Vrabel Plumbing Co. • Electrical Contractor Clista Electric, Inc.

& District Administration Offices

& District Administ

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

ANALYSIS ONE

• Opportunity

In the case of the New Moon Area High School, the building and some of its systems were modeled using 3-dimensional software, but the models were not made available to the construction team. There is a great potential for this project and others like it to benefit from BIM in the future.

o Objective

Develop a strategy for making BIM available for contractors in a multiple prime delivery by providing the tools needed to smoothly integrate several specific BIM uses into this widely used delivery method.

New Moon Area High School &

District Administration Offices

nage provided by Eckles Architecture & Engineering, Inc.

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Project Overview

Conclusions

Questions

• Structural Breadth

CONCLUSIONS

Challenges

- Concern over liability among designers
- Unpredictable contractor pool
- Model transfer and level of detail (LOD)
- Owner support

• Keys to Success

- Utilize AIA E202-2008 BIM Protocol Exhibit
- Redevelop specifications for coordination
- Consider HVAC contractor for leading coordination
- Start with 3-4 simple BIM uses

New Moon Area High School & District Administration Offices

mage provided by Eckles Architecture & Engineering, Inc

Kristopher Brice | Construction Management | 4.13.2010

dination

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

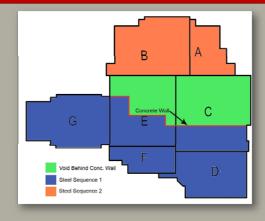
Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions

• Structural Breadth

ANALYSIS TWO


New Moon Area High School & District Administration Offices

The original design of the foundation wall resulted in a disjointed construction sequence along with the need for the temporary enclosures for parts of construction.

• Objective

Determine if a bracing design will allow the first floor of Areas C&E to be completed in sequence with the rest of the structure and further reduce the overall construction schedule.

8

Kristopher Brice | Construction Management | 4.13.2010

The

FOUNDATION WALL DESIGN

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

o Size

- 15 feet tall • 18" thick
- 436 feet long

o Support

- 28" x 40" grade beam
 48" concreted caissons

New Moon Area High School &

District Administration Offices

Kristopher Brice | Construction Management | 4.13.2010

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions

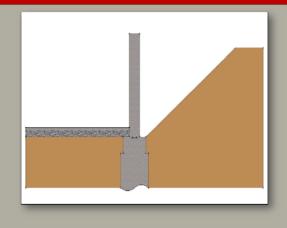
Questions

Structural Breadth

FOUNDATION WALL DESIGN

New Moon Area High School & District Administration Offices

o Size


- 15 feet tall • 18" thick
- 436 feet long

o Support

- 28" x 40" grade beam
 48" concreted caissons

o Backfill Requirements

- First floor steel and slab must be in place
- Slab required to be at 28-day strength

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions

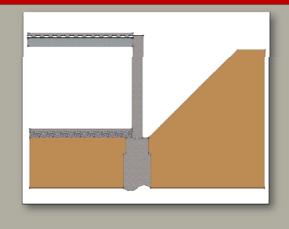
Questions

Structural Breadth

FOUNDATION WALL DESIGN

New Moon Area High School & District Administration Offices

o Size


- 15 feet tall
 - 18" thick
 - 436 feet long

o Support

- 28" x 40" grade beam
 48" concreted caissons

o Backfill Requirements

- First floor steel and slab must be in place
- Slab required to be at 28-day strength

11

Kristopher Brice | Construction Management | 4.13.2010

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions

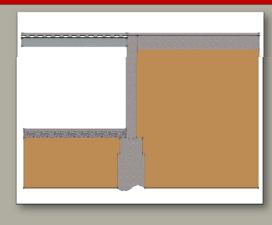
Questions

• Structural Breadth

FOUNDATION WALL DESIGN

New Moon Area High School & District Administration Offices

o Size


- 15 feet tall • 18" thick
- 436 feet long

o Support

- 28" x 40" grade beam
 48" concreted caissons

o Backfill Requirements

- First floor steel and slab must be in place
- Slab required to be at 28-day strength

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

BRACING DESIGN AND LAYOUT

- Mabey Bridge & Shore, Inc System 160 Bracing
 - Distribution within 20 miles of site
 - Relatively lightweight
 - Small enough not to interfere with construction
 - Favorable compressive strength

New Moon Area High School & District Administration Offices

Image provided by Mabey Bridge & Shore, Inc

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

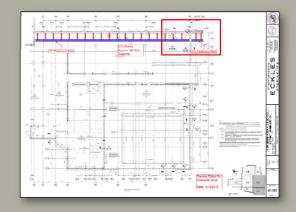
• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

BRACING DESIGN AND LAYOUT


• Mabey Bridge & Shore, Inc – System 160 Bracing

- Distribution within 20 miles of site
- Relatively lightweight
- Small enough not to interfere with construction
- Favorable compressive strength

• Bracing Layout

- Braces to be spaced at 10' O. C.
- 44 total braces required (Area C: 21, Area E: 23)

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

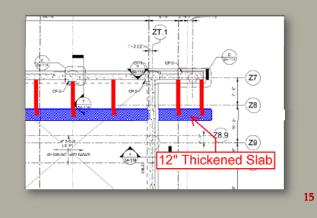
Questions

Kristopher Brice | Construction Management | 4.13.2010

BRACING DESIGN AND LAYOUT

• Mabey Bridge & Shore, Inc – System 160 Bracing

- Distribution within 20 miles of site
- Relatively lightweight
- Small enough not to interfere with construction
- Favorable compressive strength


• Bracing Layout

- Braces to be spaced at 10' O. C.
- 44 total braces required (Area C: 21, Area E: 23)

• Additional Requirements

• 3' section of 12" thickened slab centered on the anchoring point of braces to prevent slab failure

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area

o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

New Moon Area High School & District Administration Offices

Image provided by Mabey Bridge & Shore, Inc

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

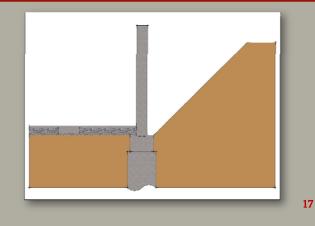
Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area


o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

• Construction Sequence

- Wall can be backfilled shortly after forms are removed
- Grade beams in Areas C and E installed much earlier

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

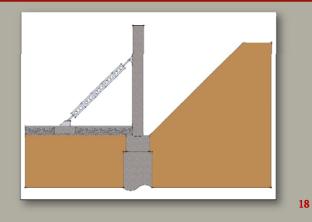
Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area


o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

• Construction Sequence

- Wall can be backfilled shortly after forms are removed
- Grade beams in Areas C and E installed much earlier

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

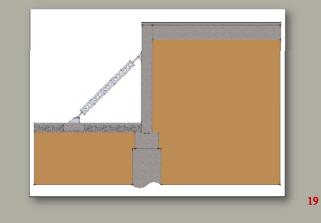
Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area


o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

• Construction Sequence

- Wall can be backfilled shortly after forms are removed
- Grade beams in Areas C and E installed much earlier

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

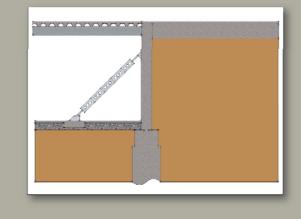
Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area


o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

• Construction Sequence

- Wall can be backfilled shortly after forms are removed
- Grade beams in Areas C and E installed much earlier

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

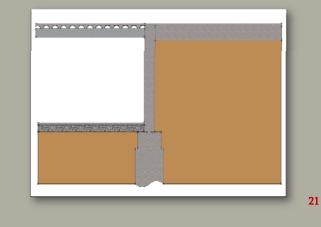
Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACT

• Brace Installation

- Must wait for slab on grade to be placed
- Requires two man crew for installation
- Three days required for each area


o Schedule Change

- 37 day reduction in the time to complete structure
- Potential \$60,000 savings in general conditions
- Structure lies on the critical path

• Construction Sequence

- Wall can be backfilled shortly after forms are removed
- Grade beams in Areas C and E installed much earlier

New Moon Area High School & District Administration Offices

COST IMPACT

& District Administration Offices

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

• Brace Rental and Installation

- Area C (10 weeks): \$11,728
- Area E (9 weeks): \$11,578
- Installation: \$1,918

• Additional Concrete

- Thickened slab: \$2,132
- Total additional Cost to General Contractor
 - \$27,356

286 CY \$ 97.16 \$ 10.39 \$ 0.41 \$ 194.32 \$ 123.16 \$ Caissons (3,000 psi)

New Moon Area High School &

District Administration Offices

Caisson Reinforcing	11	Tons	\$	1,417.48	\$	712.64	\$	\$ 2,130.12	\$ 2,714.43	\$ 29,858.73
Grade Beams (4,000 psi)	119	CY	Ş	101.97	Ş	11.03	\$ 4.90	\$ 117.90	\$ 133.85	\$ 15,928.15
Grade Beam Reinforcing	13	Tons	\$	1,345.40	\$	413.96	\$	\$ 1,759.36	\$ 2,146.73	\$ 27,907.49
Concrete Walls (4,000 psi)	371	CY	Ş	101.97	Ş	18.07	\$ 8.04	\$ 128.08	\$ 147.86	\$ 54,856.06
Wall Reinforcing	16	Tons	\$	1,417.48	\$	497.80	\$	\$ 1,915.28	\$ 2,373.83	\$ 37,981.28
12" Thickened Slab Concrete	16	CY	Ş	101.97	Ş	10.75	\$ 4.77	\$ 117.49	\$ 133.25	\$ 2,132.00
Bracing System Labor	44	Each			\$	39.63		\$ 39.63	\$ 43.59	\$ 1,918.09
Area C - Mabey System 160 Wall										
Brace Rental (21 Braces @ 10)	10	Week						\$ 1,040.00	\$ 1,112.80	\$ 11,728.00
Area E - Mabey System 160 Wall										
Brace Rental (23 Braces @ 9)	9	Week						\$ 1,140.00	\$ 1,219.80	\$ 11,578.20
									TOTAL:	\$ 229,111.76

35,223.76

ANALYSIS THREE

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: Slender Wall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

o Problem

Delays in the installation of the brick veneer resulted in additional delays in the placement of windows and curtain walls, further pushing back the building dry date.

o Objective

Select a precast wall system that will ensure the building enclosure remains on schedule while also adhering to the original design standards.

New Moon Area High School &

01.06.2010

SLENDERWALL PRECAST

Project Overview

Analysis One: BIM with Multiple Prime Contracts

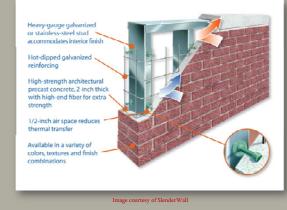
Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions


Questions

Kristopher Brice | Construction Management | 4.13.2010

• SlenderWall Benefits

- Lightweight design 30 lbs/ft²
- Includes 16 gauge exterior metal framing
- Can be designed as load bearing
- Reduced installation times with Lift-and-Release system
- Increased floor space
- Large variety of colors, textures and finishes available

New Moon Area High School & District Administration Offices

Analysis One: BIM with Multiple Prime Contracts

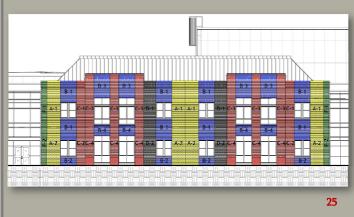
• Building Envelope Breadth / M.A.E Study

Analysis Three: SlenderWall Architectural Precast

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions


• Structural Breadth

PANEL LAYOUT

• Panel Sizes

- Building not ideally designed for precast application
- 26 different sizes consisting of 7 different widths
- Layout requires slight architectural changes
- Efficiency can be increased with changes to façade details around the gymnasium and auditorium

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

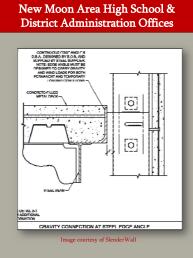
Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

STRUCTURAL REQUIREMENTS

• Cavity Wall


- Design load 50 lbs/ft²
- Majority of load carried by foundation

• SlenderWall

- Design load 30 lbs/ft²
- Can be load bearing
- Designed to withstand differential movement

• Conclusion

- Structural design will not be affected
- Could result in overall savings if designed as load bearing

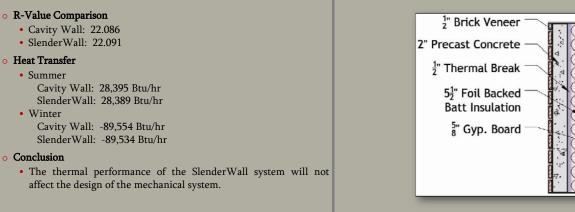
Analysis One: BIM with Multiple Prime Contracts

• Building Envelope Breadth / M.A.E Study

Analysis Three: SlenderWall Architectural Precast

Analysis Two: Foundation Wall Bracing Design

Project Overview


Conclusions

Questions

• Structural Breadth

THERMAL PEFORMANCE

New Moon Area High School & District Administration Offices

Kristopher Brice | Construction Management | 4.13.2010

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

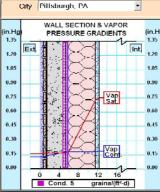
• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

MOISTURE PERFORMANCE


- o Condensation Analysis (H.A.M. Toolbox)
 - Cavity Wall
 - Summer: No Condensation Winter: No Condensation
 - SlenderWall Summer: No Condensation Winter: Chance of 5 grains/(ft²-day) in air cavity

o Preventative Treatments

- Apply vapor barrier to back of studs
- Use foil backed insulation

New Moon Area High School &

Analysis One: BIM with Multiple Prime Contracts

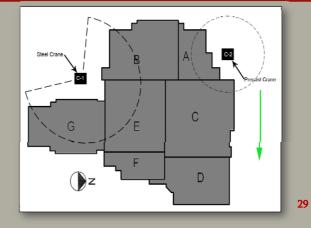
• Building Envelope Breadth / M.A.E Study

Analysis Three: Slender Wall Architectural Precast

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions


• Structural Breadth

SCHEDULE IMPACTS

• Installation Sequence

- Begin during final week of steel construction
- Overlaps steel construction by three days
- Start at North façade and continue clockwise
- Lift-and-Release systems requires 20 minutes per panel

Project Overview

Analysis One: BIM with Multiple Prime Contracts

Analysis Two: Foundation Wall Bracing Design

• Structural Breadth

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Conclusions

Questions

Kristopher Brice | Construction Management | 4.13.2010

SCHEDULE IMPACTS

o Installation Sequence

- Begin during final week of steel construction
- Overlaps steel construction by three days
- Start at North façade and continue clockwise
- Lift-and-Release systems requires 20 minutes per panel

o Schedule Change

- Original Duration: 164 days
- SlenderWall Duration: 39 Days
- Difference in completion dates: -32 days

New Moon Area High School & District Administration Offices

Slenderwall Precast vs. Brick Veneer Schedule Comparison

Original Construction Schedule						
Туре	Start Date	Finish Date	Total Duration			
SlenderWall	3/10/2010	5/3/2010	39			
Brick Veneer	10/29/2009	6/15/2010	164			
	Total Savings:	32 Days				

Analysis One: BIM with Multiple Prime Contracts

• Building Envelope Breadth / M.A.E Study

Analysis Three: SlenderWall Architectural Precast

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions

Questions

• Structural Breadth

COST IMPACT

• Cavity Wall Cost

Includes all building components not required by SlenderWall
Total: \$2,289,946

• SlenderWall Cost

- Based on average cost of \$40/SF
- Includes delivery, erection and insulation
- Total: \$2,012,912
- Total Savings to the Owner
 - \$277,034

New Moon Area High School & District Administration Offices

SlenderWall Precast vs. Brick Veneer Cost Comparison						
Added Material						
Material		Cost				
SlenderWall	\$	1,929,694				
Foil Backed Blanket Insulation	\$	83,218				
Total:	\$	2,012,912				
Deleted Material						
Material		Cost				
Brick Veneer	\$	1,765,620.80				
Extruded Polystyrene Insul.	\$	123,553.60				
Exterior Sheathing	\$	82,368.44				
Air Barrier	\$	73,884.00				
Exterior Metal Studs	\$	244,519.74				
Total:	\$	2,289,946.58				
Cost Savings:	\$	277,034.09				

31

CONCLUSIONS

& District Administration Offices

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast • Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions

• Structural Breadth

- Analysis One: BIM with Multiple Prime Contracts
 - Change in contracts and specifications
 - Need owner support
 - Not ready for the change

New Moon Area High School & District Administration Offices

age provided by Eckles Architecture & Engineering, Ind

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions

• Structural Breadth

CONCLUSIONS

- Analysis One: BIM with Multiple Prime Contracts
 - Change in contracts and specifications
 - Need owner support
 - Not ready for the change

• Analysis Two: Foundation Wall Bracing Design

- 37 day reduction in construction schedule
- \$27,356 cost to general contractor
- More efficient construction sequence

New Moon Area High School & District Administration Offices

Image provided by Mabey Bridge & Shore, Inc

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions

Questions

• Structural Breadth

CONCLUSIONS

- Analysis One: BIM with Multiple Prime Contracts
 - Change in contracts and specifications
 - Need owner support
 - Not ready for the change

• Analysis Two: Foundation Wall Bracing Design

- 37 day reduction in construction schedule
- \$27,356 cost to general contractor
- More efficient construction sequence

• Analysis Three: SlenderWall Architectural Precast

- 32 day reduction in façade installation
- \$277,034 saving to the owner
- Decision must be made in the beginning

New Moon Area High School & District Administration Offices

Kristopher Brice | Construction Management | 4.13.2010

Analysis One: BIM with Multiple Prime Contracts

Analysis Three: SlenderWall Architectural Precast

• Building Envelope Breadth / M.A.E Study

Analysis Two: Foundation Wall Bracing Design

Project Overview

Conclusions Questions

• Structural Breadth

ACKNOWLEDGMENTS

Eckles Construction Services, Inc. Kenneth Holsopple John Pappas Brian Fulkerson

Eckles Architecture & Engineering, Inc. Cassandra Renninger Susan Cooper

Nello Construction Jerry Falso

The Pennsylvania State University

Dr. Christopher Magent Professor Holland Professor Parfitt Dr. Richard Behr Craig Dubler

New Moon Area High School & District Administration Offices

Barber & Hoffman Consulting Engineers James Pospisil

> Mabey Bridge & Shore, Inc. James Porreca

> > Hranec Corporation Mike Reese

W.G. Tomko, Inc. Rich Miller

> SlenderWall Frederic Beck

. . . And most of all, I would like to THANK my family and friends!

(MA) New Moon Area High School	QUESTIONS?	New Moon Area High School & District Administration Offices
& District Administration Offices		
Project Overview		
Analysis One: BIM with Multiple Prime Contracts		
Analysis Two: Foundation Wall Bracing Design		
• Structural Breadth		
Analysis Three: SlenderWall Architectural Precast		
• Building Envelope Breadth / M.A.E Study		
Conclusions		
Questions		
		Image provided by Eckles Architecture & Engineering, Inc
Kristopher Brice Construction Management 4.13.2010		